
Public Reporting Burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, 
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comment 
regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington 
Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302, and 
to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington DC 20503

1. AGENCY USE ONLY (Leave Blank)

4.  TITLE AND SUBTITLE

6. AUTHORS

7.  PERFORMING ORGANIZATION NAMES AND ADDRESSES

9.  SPONSORING/MONITORING AGENCY NAME(S) AND 
ADDRESS(ES)

U.S. Army Research Office 
 P.O. Box 12211 
 Research Triangle Park, NC 27709-2211

11.  SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department 
of the Army position, policy or decision, unless so designated by other documentation.

12. DISTRIBUTION AVAILIBILITY STATEMENT

Approved for Public Release; Distribution Unlimited

13.  ABSTRACT (Maximum 200 words)

The abstract is below since many authors do not follow the 200 word limit

14.  SUBJECT TERMS

nerve agents, acetylcholinesterase, prophylaxis, QSAR, virtual screening, noncovalent 
inhibitors

17.  SECURITY 
CLASSIFICATION OF REPORT

UNCLASSIFIED

NSN 7540-01-280-5500

Gerald H. Lushington, Jian-Xin Guo, Nora M. Wallace

University of Kansas

2385 Irving Hill Road

Lawrence, KS 66044 -7552

Reliable Prescreening of Candidate NerveAgent Prophylaxes via 3D 
QSAR

REPORT DOCUMENTATION PAGE

18.  SECURITY CLASSIFICATION 
ON THIS PAGE

UNCLASSIFIED

2. REPORT DATE:

12b.  DISTRIBUTION CODE

UNCLASSIFIED

19.  SECURITY 
CLASSIFICATION OF 
ABSTRACT

5.  FUNDING NUMBERS

8.  PERFORMING ORGANIZATION REPORT 
NUMBER

10.  SPONSORING / MONITORING AGENCY 
REPORT NUMBER

W911NF0510181

46918-CH-II.1

Final Report

Form Approved OMB NO. 0704-0188

3. REPORT TYPE AND DATES COVERED

1-Apr-2005

Unknown due to possible attachments

16.  PRICE CODE

Standard Form 298 (Rev .2-89) 
Prescribed by ANSI Std. 
239-18 298-102

15.  NUMBER OF PAGES

20.  LIMITATION OF 
ABSTRACT

UL

- 31-Dec-2005



Final Report:  Reliable Prescreening of Candidate NerveAgent Prophylaxes via 3D QSAR

Report Title

ABSTRACT
Organophosphorus (OP) nerve agents are among the most toxic chemicals known to man and are notoriously easy to synthesize. As a result, 
their potential use against our military by insurgents, terrorists and other rogue groups remains a continuing threat. Therapeutics for 
countering OP toxicity exist, but do not adequately protect against some fast-acting agents (e.g., soman) without complementary support of 
prophylactic species. Some prophylactics do already exist, but may be responsible for unacceptable long-term health consequences. As a 
result, the search for safe, effective OP prophylactics remains of great interest. OP prophylactic design typically involves finding inhibitors 
of the acetylcholinesterase (AChE) active site (the target of OP toxicity) that bind strongly enough to prevent OP binding, but not so 
strongly as to be excessively toxic themselves. Searching such a balance through laboratory experiments alone is likely to entail an 
expensive, inefficient trial-and-error search. In order to expedite such efforts we have developed and applied computational quantitative 
structure-activity relationship models to the prediction of AChE-binding efficacy and toxicity for candidate prophylactics, identifying six 
strong inhibitor prospects (predicted to have sub-nanomolar Ki-values) from within the synthetically available chemicals of the NIH 
PubChem database.

(a) Papers published in peer-reviewed journals (N/A for none)

Guo, J., Hurley, M.M., Wright, J.B., Lushington, G.H. "A Docking Score Function for Estimating Ligand-Protein Interactions: Applications 
to Acetylcholinesterase Inhibition." J. Med. Chem. 47: 5492, 2004.

Hurley, M.M., Balboa, A., Lushington, G.H., and Guo, J.-X.  "Interactions of Organophosphorus and Related Compounds with 
Cholinesterases, a Theoretical Study."  Chemico-Biological Interactions.  157-158: 321-325, 2005. 

Lushington, G.H., Guo, J.-X., Hurley, M.M.  "Acetylcholinesterase:  Molecular Modeling with the Whole Toolkit."  Curr. Topics Med. 
Chem.  6: 57-73, 2006.

Guo, J.-X., Wu, J.-Q., Wright, J.B., Lushington, G.H.  "Mechanistic Insight into Acetylcholinesterase Inhibition and Acute Toxicity of 
Organophosphorus Compounds: a Molecular Modeling Study." Chem. Res. Toxicol. 19: 209-216, 2006.

List of papers submitted or published that acknowledge ARO support during this reporting 
period.  List the papers, including journal references, in the following categories:

(b) Papers published in non-peer-reviewed journals or in conference proceedings (N/A for none)

 4.00Number of Papers published in peer-reviewed journals:

Number of Papers published in non peer-reviewed journals:

Guo, J.-X.; Lushington, G.H.; The Mechanistic Insight by Molecular Modeling on The Acute Toxicity of Organophosphorus Compounds. 
Kansas city area life sciences research day, April 6, 2005

(c) Papers presented at meetings, but not published in conference proceedings (N/A for none)

 0.00

Number of Papers not Published:

(d) Manuscripts

 1.00

Number of Manuscripts:  0.00



Number of Inventions:

Graduate Students

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

Names of Post Doctorates

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

Names of Faculty Supported

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

Names of Under Graduate students supported

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

Names of Personnel receiving masters degrees

NAME

Total Number:

Names of personnel receiving PHDs

NAME

Total Number:

Names of other research staff

PERCENT_SUPPORTEDNAME
Jian-Xin Guo  0.75 No
Nora M. Wallace  0.00 No

 0.75FTE Equivalent:

 2Total Number:

Sub Contractors (DD882)



Inventions (DD882)



Reliable Prescreening of Candidate Nerve Agent Prophylaxes via 3D QSAR 
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Forward:  This work was aimed at developing and implementing a reliable, efficient  
computational method for predicting the propensity of specific chemicals to serve as 
prophylaxes against nerve agent poisoning.  Based on three dimensional (3D) 
quantitative structure-activity relationship (QSAR) criteria, the method was designed to 
identify those Acetylcholinesterase (AChE) inhibitors that either bind too weakly (i.e., are 
ineffectual) or too strongly (i.e., are themselves toxic) from the myriad of known AChE 
inhibitors.  The resulting tool should thus expedite DOD prophylaxis research by 
screening out compounds with inappropropriate inhibition tendencies. 

This project aims to deliver software capable of deriving quantitatively reasonable 
binding affinity predictions from docked ligand-receptor complexes, thus allowing 
estimation of potential appliation to nerve agent prophylaxis.  Conventional docking 
scoring functions whose entropic term has been trained across a broad range of enzyme 
receptors seem to score AChE interactions very poorly.  To properly account for AChE 
entropy, we will use QSAR techniques to train an AChE-specialized scoring model as a 
weighted linear sum of ligand atom - receptor residue enthalpic interactions.  The 
predictions generated by this software need not replace more rigorous experimental or 
computational measurements, but should permit prescreening that will help researchers 
to focus their efforts on manageable subsets of the extensive collection of known or 
suspected AChE inhibitors.  This work is also expected to provide an efficient means for 
intuiting new inhibitor scaffolds by elucidating the steric and electrostatic importance of 
specific receptor residues whose interactions must be accomodated by bound ligands. 
 
Tables and Figures: 
− Figure 1.  Schematic showing the information flow into and within our AChE ligand 

binding affinity prediction (scoring) software. 
− Table 1.  Predicted AChE binding affinity for 71 molecules from the PubChem Small 

Molecules Collection with physicochemical attributes similar to known AChE 
inhibitors.   

− Figure 2.  Top scoring AChE inhibitors from derived from PubChem analogs of 
known anticholinesterases 

− Figure 3.  Bound conformations of molecules 1144141 (A), and 101917 (B) within the 
AChE active site.   

 
Problem Statement:  identification of strong but non-toxic AChE inhibitors is critical to 
continued efforts to devise a safe and reliable prophylaxis scheme for countering the 
toxic potential of nerve agent chemical weaponry.  In vitro and in vivo pursuit of such 
research is inherently dangerous, time consuming and expensive, thus the development 
of reliable new computational methods to prescreen potential inhibitor candidates is of 
great potential value.  Given multiple crystal structures of AChE available in the literature 
and within the protein databank, this research is highly amenable to structure-based 
design techniques, however the inhibition scoring models provided with conventional 
molecular docking software do not correlate well with experimental affinity trends among 
known AChE inhibitors, Likely due to an inaccurate or inadequate account of entropic 
effects within the AChE receptor.  We have thus a scoring model in this work to reliably 



account for such effects and thereby reproduce known behavior and predict efficacy of 
hitherto uncharacterized compounds.  
 
Important Results:  The basic methodology underlying this work was developed, 
validated and published [1] prior to commencement of this project.  The corresponding 
publication is provided as Appendix A.  The primary deliverable in this project, the 
development of software implementing the resulting AChE-inhibition specific score 
function for use by chemical defense researchers (described below) was completed by 
9/30/2005.  Use of the resulting software entails a process flow as depicted in Figure 1, 
whereby a researcher applies our specially tailored AChE-specific score function to 
evaluate the inhibitive potential for ligands that have been computationally or manually 
docked to the AChE receptor.  The actual computational docking simulation is a 
prerequisite to our analysis and is not explicitly performed via the software developed 
herein, although our method is compatible with the docking results attained by most 
available docking programs, including commercial codes such as FlexX and MOE-Dock, 
plus academic freeware codes such as AutoDock.  An additional co-requisite step, the 
assignment of Merck Molecular Force Field (MMFF94) atom types and partial charges 
[2] must also be performed independently of our software, as can be readily 
accomplished by a variety of 3rd party programs such as QUACPAC, SYBYL, MOE, etc.  
Given the docked structure and the proper MMFF94 atom types, one may then apply our 
new programs compute a pKi score for the ligand via the expression described in detail 

Compatible Software 

Ligand model preparation: 
Chem3D (commercial) 

http://www.cambridgesoft.com 
ChemSketch (free for non-profit) 

http://www.acdlabs.com 
Insight-II  (commercial) 

http://www.accelrys.com 
MOE  (commercial) 

http://www.chemcomp.com 
MOLDA (free for non-profit) 

http://www.molda.org 
SYBYL (commercial) 

http://www.tripos.com 

Docking: 
AutoDock (free for non-profit) 

http://www.scripps.edu/mb/olson 
FlexX (commercial) 

http://www.tripos.com 
MOE-Dock  (commercial) 

http://www.chemcomp.com 

Atom typing / charge calculation: 

 

QUACPAC (free for non-profit) 
http://www.eyesopen.com 

SYBYL (commercial) 
http://www.tripos.com 

Fig. 1.  Schematic showing the information flow 
into and within our AChE ligand binding affinity 
prediction (scoring) software. 

 



in Eq. 1 of Appendix A.  Specifically, ligand / receptor residue electrostatic and van der 
Waals intermolecular interaction enthalpy terms are computed according to the MMFF94 
force field terms as devised by Thomas Halgren [1].  These enthalpies are translated to 
final predicted pKi affinity predictions by incorporating entropic perturbative corrections 
(for each receptor residue within a 12 Å sphere of the central cavity) as evaluated by 
partial least squares (PLS) fitting to affinity trends within a set of 53 known non-covalent 
AChE inhibitors.  In carrying out this PLS modeling, we achieved an excellent correlation 
(R2 = 0.89) relative to experimental affinity data, as well as strong predictivity (leave-one-
out cross validated correlation of Q2 = 0.71 within the training set and a predictive R2 = 
0.69 value for a set of 16 compounds left out of the original training set). 

Work during the final three months of CY2005 was devoted to the application of 
our method to elucidation of new potential inhibitors.  To accomplish this, then entire 
PubChem small molecule virtual library (millions of compounds) was scanned via the 
DiverseSolutionsTM [3] program to elucidate recently synthesized compounds with 
physicochemical properties similar (but not identical) to those known AChE inhibitors in 
the original 69 compound training and test sets reported in the previous paragraph.   
From this analysis, a total of 71 potential new inhibitor candidates were elucidated 
according to minimal physicochemical distances as scored by BCUT diversity metrics 
[4].  This set of compounds were then docked into an AChE receptor model via the 
FlexX program [5], and computational pKi predictions were then performed.  The 
resulting affinity scores are reported in Table 1, and the five top scoring (sub-nanomolar) 
inhibitors are depicted in Fig. 2. 

 
Table 1.  Predicted AChE binding affinity for 71 molecules from the PubChem Small 
Molecules Collection with physicochemical attributes similar to known AChE inhibitors.  
potential sub-nanomolar inhibitors (pKi > 9.0) are shown in bold font. 

Cpd. ID pKi Cpd. ID pKi Cpd. ID pKi Cpd. ID pKi 

3389 
138357 
184705 
191042 
210342 
249033 
266808 
270535 
281236 
376530 
376534 
409286 
427257 
434434 
493838 
495057 
498062 
625525 

6.4707 
7.4426 
8.9626 
7.6288 
8.7880 

10.8281 
4.3691 
5.3963 
7.0434 
8.6967 
8.8889 
8.1989 
3.5223 
6.2186 
6.9859 
6.9699 
7.4259 
8.7682 

680250 
720003 
748308 
748321 
775240 
783427 
783500 
785217 
798534 
802115 
802520 
833602 
838412 
848206 
858800 
881012 
899731 
919226 

8.6312
5.6345

10.1534
5.7561
3.3730
7.0665
7.7037
7.4220
7.4776
7.8668
1.2580
6.2348
7.7260
7.1518
8.9556
6.8794
8.7880
7.5994

933051
951510
956831
956837
986516

1001917
1133586
1144141
1150763
1152275
1152327
1154309
1163388
1167962
1179804
1236539
1316823
1333763

5.7801
6.9074
5.5098
6.4678
4.5478

10.6315
7.9118

14.2625
7.5349
7.2546
7.2546
6.0770
6.1331
6.7236
6.5368
6.8997
7.0958
6.2979

1339872 
1341521 
1379265 
1410811 
1427301 
1430079 
1464709 
1467950 
1563954 
1586860 
1629088 
1637355 
1637358 
1637361 
1639895 
1658324 
1665392 

7.3119
7.6272
7.2713
5.4950
8.1817
5.7702
6.9736

-8.0860
6.7446
5.9723
8.4024
6.6228
7.3683
7.2771
9.0748
7.2574
8.4541

 



Among the top scoring 
prophylactic candidates that we identified, 
the one predicted to be the most powerful 
inhibitor, molecule #1144141, is a tacrine-
line peripheral-active-site (PAS) binder 
whose docked conformation is reported in 
Fig. 3a.  Molecules 249033 and 748308, 
and 1639895 have similar PAS-binding 
conformations.  Molecule #101917, on the 
other hand, binds one tail in the PAS 
region and another down near the base of 
the AChE gorge in a manner, shown in 
Fig. 3b, that is analogous to the well 
known Alzheimer's disease drug aricept 
(donepezil). 

Fig.2.  Top scoring AChE inhibitors from 
derived from PubChem analogs of known 
anticholinesterases.

BA 
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Fig. 3.  Bound conformations of molecules 1144141 (A), and 101917 
(B) within the AChE active site.  The receptor surface is colored as 
follows: red = H-bond acceptors (O's and lone pair N's), blue = 
donatable H's (HO and HN), white = other polar atoms, yellow = 
nonpolar atoms.  Ligands are colored according to standard CPK 
coloring (H = cyan, C = white, N = blue, O = red, S = yellow).  

 
 
 

Although molecule #1144141 is clearly predicted to be the stronger inhibitor, it 
has two potential drawbacks:  a) while it's predicted affinity may be a significant over-
estimation (since there were no inhibitors in the training set within orders of magnitude of 
the same affinity) it may still be too powerful an inhibitor and may thus effect an 
intolerable level of AChE-inhibition-related toxicity, and b) deriving most of its inhibitive 
potential from PAS hydrophobic interactions, like tacrine, may significantly diminish the 
oral availability and distributive potential of the molecule.  Consequently, molecule 
#101917 and its analogs, essentially exhibiting binding conformers similar to aricept but 
with better hydrogen bonding interactions with the AChE receptor, may prove to be more 
fruitful in yielding practical prophylactic prospects. 



Finally, an important complementary method has been developed to recognize 
and predict prospective toxicity among covalent-binding AChE inhibitors of potential 
application to nerve agent prophylaxis and therapeutics.  This work has recently been 
published in the journal Chemical Research on Toxicology, and the corresponding paper 
is included herein as Appendix B.  While the initial work in this field focused on covalent 
AChE inhibitors due to a greater availability of in vivo toxicity data, modifications to the 
methodology are possible to extend its scope to non-covalent systems such as those 
reported above. 
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Acetylcholinesterase (AChE) inhibition is an important research topic because of its wide range
of associated health implications. A receptor-specific scoring function was developed herein
for predicting binding affinities for human AChE (huAChE) inhibitors. This method entails a
statistically trained weighted sum of electrostatic and van der Waals (VDW) interactions
between ligands and the receptor residues. Within the 53 ligand training set, a strong correlation
was found (R2 ) 0.89) between computed and experimental inhibition constants. Leave-one-
out cross-validation indicated high predictive power (Q2 ) 0.72), and analysis of a separate
16-compound test set also produced very good correlation with experiment (R2 ) 0.69). Scoring
function analysis has permitted identification and characterization of important ligand-receptor
interactions, producing a list of those residues making the most important electrostatic and
VDW contributions within the main active site, gorge area, acyl binding pocket, and periferal
site. These analyses are consistent with X-ray crystallographic and site-directed mutagenesis
studies.

Introduction

Acetylcholinesterase (AChE) is an enzyme that hy-
drolyzes the neurotransmitter acetylcholine (ACh) at
cholinergic synapses, accomplishing its role at a rate
faster than those of most other known enzymes.1,2

Recent research interest regarding this enzyme is not
only due to this high catalytic efficiency but also due to
the broad implications of AChE inhibition on human
health, agrochemistry, and chemical agents. For ex-
ample, Alzheimer’s disease (AD) is associated with low
in vivo levels of acetylcholine; thus, AChE has been
targeted in many drug discovery projects aimed at
maintaining ACh availability via mild or reversible
inhibitors such as tacrine3 and donepezil,4 etc. While
low-level AChE inhibition is useful for such neurological
treatments, higher levels of inhibition can be detrimen-
tal. Organophosphorus (OP) compounds, in particular,
irreversibly deactivate AChE and may induce failure of
cholinergic synaptic transmission, deterioration of neu-
romuscular junctions, flaccid muscle paralysis, and
central nervous system seizures.5,6 Effective drug design
thus requires great care in balancing the level of
inhibitive efficacy.

The availability of AChE crystal structures for various
species with and without ligands provides a solid basis
for structure-based design of novel AChE inhibitors.7
There are two principle binding sites in the AChE. The
catalytic active site is located at the base of a deep gorge
in the enzyme. It contains a catalytic triad, Ser203,
Glu334, and His447 (huAChE sequence numbering, to

be used throughout unless otherwise specified), and
nearby residues (e.g., the choline binding site: Trp86)
that collectively effect the ACh catalysis reactions.8
AChE also has a peripheral anionic site (PAS) located
near the enzyme surface at the mouth of the active site
gorge. The residue Trp286 plays a very important role
in ligand binding in the PAS. Ligand binding to the PAS
affects enzymatic activity through a combination of
steric blockade of ligands moving through the gorge and
allosteric alteration of the catalytic triad conformation
and efficiency.9 The gorge itself is a narrow hydrophobic
channel with a length of ∼20 Å, connecting the PAS site
to the active site.10 An acyl binding pocket consists of
residues Gly122, Trp236, Phe295, Phe297, and Phe338
and is responsible for interacting with the acetyl
group.11 Early inhibition research was mainly focused
on ligands binding in the active site (e.g., tacrine3,
amiridine,12 etc.). Recent efforts have focused on finding
novel ligands that bind to both sites in order to search
for more potent reversible inhibitors (e.g., TAK-147,
E2020, etc.), selectively favoring the inhibition of AChE
rather than the related butyrylcholinesterase (BChE).

Molecular modeling has proven increasingly impor-
tant in helping to design novel enzyme inhibitors. A
substantial amount of prior AChE inhibitor research
has focused on using ligand-based design methods such
as CoMFA.13-17 Given an accurate receptor structure,
molecular docking can also be very useful in character-
izing ligand-receptor binding by providing predictions
of the bound conformation for the ligand and a scheme
for energetically ranking (i.e., scoring) the ligand-
receptor interaction. Great successes have been achieved
in terms of conformational predictions via flexible
docking programs such as Dock,18 Gold,19 FlexX,20 etc.
Such conformational predictions are very important to
drug design because (1) the binding conformation of

* To whom correspondence should be addressed. Fax: (785) 864-
5326. Phone: (785) 864-1140. E-mail: glushington@ku.edu.

† University of Kansas.
‡ U.S. Army Research Laboratory.
§ U.S. Army RDECOM/Natick Soldier Center.

10.1021/jm049695v CCC: $27.50 © xxxx American Chemical Society
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ligands is much easier to validate (i.e., through com-
parison with experimentally observed structures) than
is the binding affinity for different systems and (2) the
accurate prediction of the bound conformation is a
prerequisite for reliable scoring. Even with good struc-
tural predictions, however, the score may not always
agree well with experimentally determined affinities
mainly because experimental conditions include impor-
tant dynamic or entropic effects that are difficult to
rigorously represent in a general scoring function. To
account for such effects empirically, scoring functions
are typically trained via diverse sets of previously
characterized ligand-receptor interactions. Unfortu-
nately, no finite training set is likely to provide a perfect
representation for all systems of interest because of the
varying physicochemical conditions present in different
receptors. Indeed, with the AChE system, studies on
steroidal alkaloid inhibition show no correlation be-
tween the calculated binding energy and experimentally
determined activity.21 Molecular dynamics simulations
do provide a natural means for quantifying both the
entropic and enthalpic components of binding affinity
for ligand-AChE interactions;20 however, extensive
computational demands make molecuar dynamics (MD)
simulations prohibitively time-consuming for analysis
of large compound collections. In such cases, the best
compromise may be to carry out simple docking studies
but to explicitly train the scoring function to reproduce
behavior in the system of interest. Herein, we present
a new scoring function that is based on the ligand-
receptor interaction field and is trained specifically to
reproduce AChE inhibition.

Methods

The AChE crystal structures used herein were ob-
tained from the Protein Databank (PDB). Our main
docking and training activities have been focused on a
human AChE (huAChE) structure (code, 1B41)22 but
rely on ligand binding information from a Torpedo
californica AChE (tcAChE) structure (code, 1EVE) that
includes a cocrystallized E2020 inhibitor.23 Given the
absence of a firm understanding of the persistence and
roles of individual solvent molecules in and around the
AChE binding sites, all waters were removed from the
structures. To ascertain the orientation of the ligand
E2020 relative to the huAChE structure, the huAChE
structure was aligned to the tcAChE in SYBYL24 by
achieving a maximal overlap of CR atoms for corre-
sponding huAChE/tcAChE residues within the recep-
tor region. The resulting root-mean square deviation
(rmsd) between the two aligned huAChE/tcAChE struc-
tures is only 0.85 Å for the set of all backbone CR atoms
within the full enzyme subunit, suggesting good overall
alignment and substantial structural similarity. Hy-
drogen atoms were added (via SYBYL) to the resulting
huAChE-E2020 complex. The positions of these new
protons were then optimized in MOE25 via molecular
mechanics using the MMFF94s force field26 (all heavy
atoms fixed) to avoid bad interatomic contacts. The
position of E2020 was then optimized (all receptor atoms
fixed) to determine a plausible stable conformational
structure for the ligand in the receptor environment.
In both of the above simulations, MMFF94s charges
were used to account for relevant electrostatics. The

steepest descent minimization algorithm was used for
the first 100 steps (unless an rms gradient of less than
100 kcal/(mol‚Å) was first achieved), followed by 200
steps of conjugate gradient (unless an rms gradient of
less than 1 kcal/(mol‚Å) was attained), and finally
completed by 1000 steps of truncated Newton (or an rms
gradient of less than 0.01 kcal/(mol‚Å)). The resulting
E2020 structure was then extracted for subsequent
docking calculations.

Sixty-nine compounds with IC50 data measured with
human AChE assay27-30 were selected for training and
testing the scoring function. The activity among these
compounds ranges from 0.33 to 30 000 nM (Tables 1 and
2). The active site for the huAChE docking calculations
was constructed from the crystal structure by retaining
all residues within a radius of 12 Å relative to E2020
(but discarding the original ligand itself). Docking
calculations were carried out with the Gold program.19

A genetic algorithm was used in searching the binding
conformation of flexible ligands, using the default
parameters in GOLD. A maximum of 20 poses were
computed for each compound. Those docked conforma-
tions were saved in SDF format and then imported into
SYBYL for scoring calculations according to the FlexX
and CSCORE modules. The scoring methods available
included empirical methods such as ChemScore,31 FlexX
score,20 and G Score19 and knowledge-based methods
such as PMF score32 and DrugScore.33 Multilinear
regression (MLR) was used to obtain a consensus score
from these methods. One conformation was selected for
each compound to give a good compromise between the
best consensus score and those with the closest align-
ment to the original E2020 ligand. Specifically, the pose
for the scoring of the activity was selected on the basis
of having the highest consensus score (first criterion)
and ChemScore (tie-breaking criterion), with the further
stipulation that the following knowledge-based criteria
(as determined by visual inspection) must be obeyed
whenever possible: (1) good π-π overlap with residue
Trp86, as has been found to be critical for E2020
binding;23 (2) good π-π overlap with residue Trp286,
as has also been found to be very important for E2020
complexation23

The chosen conformations were used to fit an interac-
tion field whose form, basically a variant of the com-
parative binding energy (COMBINE) method,34-36 is as
follows:

where ci and dj are fitted coefficients, Ei
ele and Ej

vdw are
electrostatic and van der Waals (VDW) interactions
arising between atoms in the ith and jth residues and
the ligand. In this expression, all receptor residues
within 10 Å of the position of the original E2020 ligand
(a total of 92 residues) were included in the summation
over i, and Ei

ele and Ej
vdw were calculated via an SVL

script written for the MOE system. The statistic analy-
sis was performed in Simca-P37 with partial least
squares regression (PLS). Fifty-three of the full 69
compounds were selected as our training set, and the
other 16 compounds were used as a test set for validat-
ing the predictive power of the new scoring function.

pIC50 ) ∑
i

ciEi
ele + ∑

j

djEj
vdw (1)
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Table 1. huAChE Ligands in the Training Set
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Table 1 (Continued)
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Results and Discussion
Our scoring model built via PLS regression over

interactions within the 53-molecule training set appears
to be of reasonable quality, with a correlation coefficient
of R2 ) 0.89 and a leave-one-out cross-validation cor-
relation of Q2 ) 0.72. In using the scoring function to
evaluate the activity of the 16-molecule testing set, we
achieved good predictivity: a correlation of R2 ) 0.69
(Figure 1) between the calculated results and experi-
mental values.

To compare the precision and extensibility of our
scoring function, we contrasted the above results with
predictions made using several commercially available
scoring methods, including ChemScore,31 FlexX score,20

DrugScore,33 G Score,19 and PMF score.32 The correla-
tion between the experiment and any single scoring
method is poor. The PMF score showed the best cor-
relation but was still poor (R2 ) 0.13 for the training
set). All of the other representations gave even worse
correlations: ChemScore ) 0.07, FlexX ) 0.05, Drug-

Table 2. Testing Set of huAChE Ligands, Showing Corresponding Inhibition Data
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Score ) 0.01, G Score ) 0.004. Since those general
scoring methods were not trained in this AChE inhibi-
tion set, it is not completely fair to compare them
directly with our specially tailored energy decomposition
method. Therefore, we built a consensus score by
training (over the 53-molecule set) a weighted sum over
the above five commercially available scoring functions
as follows:

where Chemscore, Drugscore, Flexscore, Gscore, and
PMFscore refer to computed affinities from the Chem-
Score, DrugScore, FlexX score, G Score, and PMF score
methods, respectively. Although an improvement was
found for this consensus score within the training set
itself (R2 ) 0.26), its predictive potency is poor, judging
by no evident correlation within the 16-molecule testing
set.

To help verify the physical sensibility of our model,
we have mapped out the residues that contribute
significantly to the scoring function. The coefficients of
the 20 most important residues in terms of electrostatic
and VDW contributions are shown in Figure 2. In those
residues, Trp86, Ile451, Gly448, Tyr449, and Ser229 are
the most important residues in the active site for VDW
interactions. Trp86 functions by forming π-π interac-
tion with ligand aryl groups (when available), while the
other residues define the shape of the gorge base,
serving to discriminate according to ligand shape. In the
upper gorge area and the acyl binding pocket, residues
Tyr124, Phe295, Phe338, and Phe297 are responsible
for providing hydrophobic contacts. The ring of Tyr72

is almost perpendicular to the Trp286 ring and forms a
blocking wall to prevent the ligand ring from moving
away from the position where it forms a π-π interaction
with the Trp286 ring. Phe295, Phe297, Val365, and
Glu292 form another wall on the other side of the gorge,
stretching from the acyl pocket toward the PAS.

Residues Tyr449, Glu450, Ile451, Ala127, Ser128,
Tyr133, Ile118 near Trp86, and the “oxyanion hole”
residues Gly121 and Gly122 are important in providing
electrostatic interactions in the active site. Tyr337,
Asp74, Thr83, and Asn87 are the primary electrostatic
contributors in the gorge area. Gly342, Leu76, Glu285,
Trp286, His287, and Gln291 are probably helpful in
enhancing the activity of ligands with polar groups
oriented in this area, as is evidenced by reports that an
AChE inhibitor tethering in the position of His287 can
affect the binding affinity as much as 14-fold.38 Site-
directed mutagenesis in huAChE indicated that Asp74,
Tyr337, Phe338, Phe295, Phe297, Tyr133, and Glu450
can affect the affinity although it has been difficult to
determine experimentally whether these residues con-
tribute mainly electrostatic or VDW interactions.39,40

The docked ligand structures generally support the
above analysis regarding the identity of principle resi-
dues. In our current docking calculations, molecules 2-7
all share similar conformations in the PAS. The modi-
fied groups in those molecules are actually exposed to
the solvent and do not contribute directly to the ligand-

Figure 1. Correlation of the calculated activity (pIC50) with
experiment: (top) training set (R2 ) 0.89); (bottom) testing
set (R2 ) 0.69).

pIC50 ) 0.05682 Chemscore - 0.00499 Drugscore -
0.03582 Flexscore - 0.01232 Gscore +

0.01847 PMFscore + 7.62820 (2)

Figure 2. (Top) Coefficients of the 20 most important residues
for electrostatic interactions. (Bottom) Coefficients of the 20
most important residues for VDW interactions.
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receptor interaction. This is the same as observed in
previous studies.28 However, in the current work, mol-
ecule 8 takes a slightly different conformation with its
morpholino group situating in the half-buried pocket by
Trp286, His287, Ser293, Glu292, and Leu289. The
morpholino oxygen has a distance of 3.65 Å from the
backbone N of Glu292, and the morpholino nitrogen is
3.78 Å from the backbone O of Ser293. Such interactions
could slightly pull the benzisoxazole ring away from
Trp286 ring, leaving only a partial π-π interaction. This
particular conformation leads to an affinity increased
by more than 10-fold to 0.8 nM relative to molecules
2-7. This particular region has been confirmed in an
X-ray structure to be very important for the inhibitors
binding to the PAS.9

As a final point of validation, we compared the
calculated conformation for E2020 within the huAChE
crystal structure relative to its original cocrystallized
conformation in tcAChE. Our calculated structure sug-
gests that E2020 has similar but not identical binding
modes in tcAChE and huAChE (Figure 3). In the active
site, its benzyl ring forms a π-π interaction with the
indole ring of Trp86 in huAChE and Trp84 in tcAChE.
In the PAS, the indanone ring of E2020 forms a π-π
interaction with the indole ring of Trp286 in huAChE
and Trp279 in tcAChE. The charged nitrogen of the
E2020 piperidine ring undergoes a cation-π interaction
with the phenyl ring of Phe330 in tcAChE. The corre-
sponding residue Tyr337 in huAChE does not form a
similar cation-π interaction due to the steric limitations

in this area associated with an inauspicious orientation
of the Tyr337 ring. As a result, the nitrogen of the
piperidine ring of the E2020 instead interacts with the
hydroxyl groups of the Tyr337, Tyr124, and Ser125
within distances of 3.41, 3.12, and 4.18 Å relative to the
oxygen atom of the respective hydroxyl groups. To probe
the role of Tyr337, we examined the potential energy
curve for Tyr337 side chain rotation relative to the other
residues (energy evaluation according to the MMFF94s
force field with appropriate charges) but found only one
minimum in the potential curve. Closer analysis reveals
that that the Tyr337 ring is trapped in a local pocket
formed by Phe338, Tyr341, Trp439, Trp449, and His447.
In previous structural studies and molecular dynamics
simulations, it has been found that Phe330 in tcAChE
can adopt a wide range of conformations in the complex
structure and may function as a swinging gate15,23,39

that structurally couples the anionic subsite of the active
site and the PAS. It is natural to expect similar behavior
of Tyr337 in the huAChE compared with the analogous
Phe330 in tcAChE. Such a gate swing movement of the
Tyr337 ring would certainly induce a shift in attached
and neighboring residues; thus, one function of this
PAS-active site coupling could be to effect proper
residue alignment within the anionic subsite. The fact
that the huAChE crystal structure used in this study
to train our scoring function did not have a cocrystal-
lized active site inhibitor (having only a PAS-bound
fasciculin molecule22), and thus did not reflect such a
conformational shift in the Tyr337, may constitute a
subtle flaw in our model. Given our model’s fairly strong
predictive capacity, we expect the flaw to be of only
minor consequence, however.

The accord between results derived from our scoring
method and those of X-ray structures and mutagenesis
observations indicates the effectiveness of the current
analysis and the scoring function’s predictive power.
Since this method requires a set of compounds with
known activity data to fit the score function, it is most
applicable to the task of lead optimization as opposed
to de novo discovery. In contrast to the comparative
molecular field analysis (CoMFA)41 method, which uses
probe atoms such as nitrogen, carbon, etc. to calculate
possible interaction fields between ligands and a puta-
tive receptor (and does not require explicit atomic-level
representation of the receptor structure), our method
uses a “real” interaction field between the ligands and
receptor, thus requiring advance knowledge of the
receptor structure. The benefit of using the current
method is that the important residues can be directly
identified and verified by site-directed mutagenesis,
whereas CoMFA merely generates a hypothetical map
of possible favorable and unfavorable interaction regions
based on statistically postulated correlations between
activity and orientations of specific functional groups
within the ligand training set. Such a hypothetical map
may correspond to the real interaction field if the
underlying postulated statistical correlation is valid but
is unlikely to be as accurate a representation as a real
interaction field. In cases where crystal structures of
the relevant receptor are available, CoMFA-generated
hypotheses may be adjusted in order to directly cor-
respond to the real field. In this vein, there have been
successful studies that used receptor-based docking

Figure 3. (Top) Structure of E2020 binding to tcAChE. E2020
is rendered in cyan. (Bottom) Structure of the E2020 binding
in huAChE. E2020 is rendered in cyan.
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methods to align the ligands and then used CoMFA on
the resulting alignments to ascertain and analyze the
resulting grid for drug design purposes.13,14,16,17 This
method is similar in principle to the COMBINE-like
technique that we have applied herein to this huAChE
system except that COMBINE methods are easier to
compute and to understand because they only require
treatment of ligand-residue interactions (hundreds of
terms or less) rather than the thousands of grid points
in CoMFA models. Another benefit relative to CoMFA
models is that the relative simplicity of our scoring
function also allows it to be used directly in any
subsequent docking calculations, thus providing a means
to accurately score novel inhibitor candidates and
predict their bound conformations rather than having
to do so in a stepwise manner.

Conclusions

A new AChE-specific scoring function has been de-
veloped herein and used in predicting binding affinity
of AChE inhibitors. The method is based on a COM-
BINE-type approach, incorporating the electrostatic and
VDW interaction fields between the ligands and recep-
tor. A 53-compound training set was used to construct
the scoring function, and a further 16 compounds were
used to test the resulting model. Strong statistical
correlations were found between predicted and observed
affinities for both the training and testing set. Analysis
of the scoring function has permitted identification of
those receptor residues making the most important
contributions to ligand binding. These analyses are
consistent with the X-ray structure and mutagenesis
studies. A comparison with other scoring methods and
consensus scoring indicated the high effectiveness and
predictability of this method.
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Acute toxicity of organophosphorus (OP) compounds results mainly from irreversible acetylcholinest-
erase (AChE) inhibition; however OP toxicity frequently hinges on prior biotransformations that produce
toxic metabolites. To account for both precursor metabolic effects and primary AChE inhibition, we
included absorption, distribution, metabolism, excretion (ADME) effects, ligand binding, and reactive
AChE phosphorylation and aging in a detailed but computationally expedient phenomenological toxicity
model. Ligand negative accessible surface area (NASA) was used as a generic ADME descriptor, while
relevant metabolic, phosphorylation, and aging reactions were assessed via quantum chemical enthalpy
calculations, and the binding affinity of the Michaelis complex was quantified via Comparative Molecular
Field Analysis (CoMFA). The resulting model correlates very well (R2 ) 0.90) with experimental acute
toxicity measurements and provides useful mechanistic insight into the underlying toxicity. Model
predictivity was validated by leave-one-out cross-validation (Q2 ) 0.82). The Michaelis binding affinity
descriptor has the largest weight in our model, but subsequent covalent inhibition and prior ADME effects
also exhibit significant effects.

Introduction

Organophosphorus (OP) compounds are best known for their
highly toxic effect as agricultural chemicals and chemical
warfare agents. The mechanism of the acute OP toxicity has
been a subject of substantial research interest for several decades
in the search for therapies to counter OP poisoning (e.g., oximes
(1)), to devise more effective pesticides, and to uncover low-
toxicity OP species for potential pharmacological applications
(2). The main cause of OP toxicity is irreversible inhibition of
the acetylcholinesterase (AChE) enzyme (2). AChE hydrolyzes
the neurotransmitter acetylcholine (ACh) at cholinergic syn-
apses. The inactivation of the AChE by OP compounds thus
causes acetylcholine buildup, which can in turn induce failure
of cholinergic synaptic transmission, leading to deterioration
of neuromuscular junctions, flaccid muscle paralysis, and central
nervous system seizures (3, 4).

Numerous studies via a number of different techniques (e.g.,
crystallography (5), mutagenesis (6), modeling (7), etc.) concur
that OP compounds mainly interact with the AChE catalytic
triad (residues Ser203, His447, and Glu334 according to the
mouse AChE sequence) in the active site, which is connected
by a deep narrow gorge to the peripheral binding site at the
entrance of the enzyme. The inhibition mechanism involves
phosphorylation whereby a covalent bond between the central
phosphorus atom of the ligand and the side chain oxygen of
Ser203 is formed. For some OP compounds, the resulting
conjugate can further react via a process known as “aging” that
usually involves the loss of an alkyl group from the phosphyl
alkoxy substitutent. The aging process prevents AChE reactiva-
tion by conventional antidotes such as oxime therapy.

Many OP compounds do not interact with AChE in vivo in
their native form. The metabolite products, usually oxon
analogues, are frequently the actual toxicants (8). The usual
metabolism reactions include oxidative desulfuration, N-dealky-
lation, O-dealkylation, O-dearylation, thioether oxidation, among
others (9). It is thus not surprising that in vitro inhibition
measurements rarely provide a simple linear correlation with
the acute toxicity. To better understand the mechanism of OP
activity, it is necessary to augment information from direct
AChE inhibition studies with an account of absorption, distribu-
tion, metabolism, and excretion (ADME) processes. Given such
complex underlying biological processes, a full investigation
and understanding of the uptake and toxicology of even a single
OP compound can make for a daunting experimental challenge.

Molecular modeling methods have been very useful in helping
to understand OP toxicity because of the complexity of the
AChE system and the arduous, expensive, and sometimes dan-
gerous nature of the corresponding experiments. Previous model-
ing studies have largely focused on the direct inhibition of
AChE, mainly by probing the interaction of ligands with the
AChE active site (10). Those methods include quantum chem-
istry (7), molecular dynamics (7), docking (11), and interaction
field analysis of noncovalent ligands (12). In the present paper,
we will focus on a detailed but computationally efficient scheme
for integrating ADME properties, AChE binding affinity,
phosphorylation, and the aging process into a single, unified,
phenomenological model capable of reproducing the primary
trends in OP toxicity in a mechanistically intuitive fashion.

Materials and Methods

Inhibitors. Data corresponding to the 38 OP compounds
considered for this study are listed in Table 1. The LD50 values
correspond to studies on male rats exposed orally and are given in
mg/kg body weight. Among those compounds, Dichlorvos, Dicro-
tophos, Naled, Tetrachlorvinphos, Ethoprop, Oxydemeton-methyl,
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Profenofos, Fenamiphos, and Methamidophos all have direct
interaction with AChE, while the other 29 undergo biotransforma-
tion before reaching the AChE active site. Unfortunately, to the
best of our knowledge, there are no conclusive metabolic data
available in the literature for Bensulide, Disulfoton, Temephos,
Chlorethoxyfos, Sulfotep, Tebupirimphos, Acephate, and Pro-
peteamphos. Based on data availability, we thus chose a total of
30 OP compounds (9 direct-acting and 21 indirect-acting species
for which definitive metabolic data exists) for further analysis.

Receptor Model.The following AChE crystal structures were
obtained from protein data bank (13) and used as structural
references in this study: (1)Torpedo californicaAChE with nerve
agent VX after phosphorylation (1VXR) (14), (2) Torpedo cali-
fornica AChE with nerve agent VX after aging (1VXO) (14), and
(3) mouse AChE complexed with Gallamine (1N5M) (15). The
latter structure, with Gallamine removed, was used as a template
for assembling our ligand-receptor complex models. Since rat
AChE is highly similar to mouse AChE (only 11 amino resides
difference between the two (16), with none of those 11 playing
any known role in the enzymatic activity or inhibition), we expect
no appreciable difference in result to arise from using the mouse
rather than the rat structure. All water and heteroatoms were
removed from the structure before adding hydrogen atoms. Protein
electrostatics were modeled via AMBER94 charges (17), and
MMFF94 charges (18) were employed for ligands. The 1VXR and
1VXO structures served as guides for positioning inhibitors within
the AChE structure. Both 1VXR and 1VXO were superimposed
with 1N5M to determine (by analogy to the cocrystallized VX)
positions of the ligands in pro-aging and post-aging by methods
that have been described in a previous study on noncovalent
inhibitors (12).

Descriptors. Given a focus on developing a mechanistically
insightful phenomenological model, descriptors were chosen ac-
cording to a requirement of having a natural physicochemical
relationship with the various physiological effects under consider-
ation (ADME processes, noncovalent complex formation, and
covalent reactivity). For reasons elaborated on in the coming
sections, ADME effects were modeled via ligand negative accessible
surface area (NASA; as computed via the MOE suite of software
(19) using default settings and MMFF94 charges (18)) plus
thermochemical characterization of the associated metabolic reac-
tion, noncovalent binding was approximated via a CoMFA model,
and trends among covalent enzymatic and inhibitive processes were
modeled via their thermochemistry. All thermochemical quantifica-
tion was done via quantum mechanically computed molecular
energies. To strike a balance between computational efficiency and
reliable representation of energetic trends among our ligands,
quantum chemical calculations were carried out at the AM1 level
(20) using MOPAC7 (21). The MMFF94 force field (18) was used
in the various nonquantum chemical molecular modeling calcula-
tions. Conformation searches were performed using a stochastic
method similar to the RIPS method (22). Ligand alignment for the
CoMFA model was determined by a pharmacophore-driven flexible
alignment method within MOE (19). In the interaction field
calculations, a monoanionic oxygen anion was used as probe atom
to calculate the energy on a grid at intervals of 1 Å. Both
electrostatic and van der Waals interaction energies were saved at
each grid point for further partial least-squares (PLS) analysis via
the Simca-P software (23).

Results and Discussion

Metabolic Effects. OP compounds may be biotransformed
by many of the different cytochrome P450 isozymes. For
example, CYP2C11, CYP3A4, and CYP2B1/2 were recently
identified as playing a role in rat metabolism of diazinon (9).
At this current stage, there is little information on which specific
isozyme accomplished the metabolism of each specific OP
compounds. In general, the reaction rate of the biotransformation
should be determined largely by the reaction barrier of the
corresponding P450 enzymatic reaction. Theoretically, these
barriers could be accurately quantified via high-level quantum
mechanical transition state calculations, however such a com-
putationally demanding undertaking is not realistic given the
number of OP compounds to be studied and the inherent
structural complexity of enzymatic reactions, not to mention
the frequent lack of information regarding the specific P450
isozyme responsible for metabolizing a given compound.
However, it is substantially easier to identify and characterize
specific metabolites rather than the intervening transition states.
As a simple approximation, we thus consider the underlying
thermochemistry, energetically characterizing both the initial
and final states for the biotransformation, since those two states
do carry important information about the viability and propensity
of a given biotransformation. All relevant initial and final state
compounds are listed in Table 1, under the “parent” and
“metabolite” columns, respectively. All of the toxic OP com-
pounds listed in Table 1 were identified from a literature search
on rat OP toxicology. Most of the metabolites take the form of
the corresponding OP-oxon. Trichlorfon has been biotrans-
formed as Dichlorvos, which itself can have a direct interaction
with AChE. Interestingly, Trichlorfon has a LD50 of 8 times
greater than its metabolite Dichlorvos, a difference likely
reflecting the dilutional effects of the biotransformation.

Molecular Surface Area. The surface area has been found
to play important roles in various ADME processes for central
nervous system drugs, including effects on membrane transport
(24), Caco-2 permeability (25), and blood-brain barrier transit
(26), among others. Since the negative and positive surfaces

Table 1. Organophosphorus Compounds Considered for Analysisa

parent metabolite
direct
acting

metabolite
references

LD50
b

(mg/kg) pLD50
c

Dichlorvos yes 80 4.097
Dicrotophos yes 21 4.678
Naled yes 250 3.602
Tetrachlorvinphos yes 4000 2.398
Trichlorfon Dichlorvos no 31 650 3.187
Ethoprop yes 34 4.469
Azinphos Methyl oxon no 32 13 4.886
Bensulide ? no 770 3.113
Dimethoate oxon no 33 215 3.668
Disulfoton ? no 2 5.699
Ethion oxon no 34 13 4.886
Malathion oxon no 35 1375 2.862
Methidathion oxon no 36 31 4.509
Phorate oxon no 37 2 5.699
Phosmet oxon no 38 147 3.833
Sulfopros oxon no 39 65 4.187
Temephos ? no 8600 2.066
Terbufos oxon no 41 2 5.699
Fonofos oxon no 41 3 5.523
Oxydemeton-methyl yes 42 47 4.328
Profenofos yes 43 358 3.446
Chlorethoxyfos ? no 5 5.301
Chlorpyrifos oxon no 44 155 3.810
Coumaphos oxon no 45 41 4.387
Diazinon oxon no 46 250 3.602
Fenitrothion oxon no 47 740 3.131
Fenthion oxon no 48 215 3.668
Methyl Chlorpyrifos oxon no 49 1500 2.824
Methyl parathion oxon no 50 14 4.854
Parathion oxon no 51 13 4.886
Pirimiphos methyl oxon no 52 1450 2.839
Sulfotep ? no 5 5.301
Tebupirimphos ? no 2 5.699
Fenamiphos yes 8 5.097
Acephate ? no 700 3.155
Methamidophos yes 31 4.509
Isofenfos oxon no 53 28 4.553
Propetemphos ? no 119 3.924

a The compounds with question mark in the metabolite were not used in
the current work.b The data are from ref8. c The pLD50 was calculated as
6 - log(LD50).
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play different roles in the ADME properties, it is necessary to
deal with them separately. In OP compounds, one of the most
obvious distinguishing structural characteristics is the distribu-
tion of negative charge in the shell around the phosphate,
phosphonate, or phosphinate group. Consequently, we have
selected the negative accessible surface area (NASA) as a
primary descriptor to account for the ADME properties of OP
compounds. Since both the parent OP and its metabolite undergo
some distribution and transportation, these properties should be
considered for estimating ADME properties. We compared the
NASA between parent OP compounds and their metabolites
(lowest energy conformations in each case) and report the results
in Figure 1. A strong correlation (R2 ) 0.98) is observed
between parent and metabolite NASA, which is not surprising
because the OP-oxon form of most of the metabolites is highly
similar to the parent structure. In this regard, NASA values
derived from either the parent OP or its metabolite are equally
suitable for estimating ADME effects.

Since NASA values depend on the molecular conformation,
it is necessary to take into account any conformation change
that may result from constituent steps in the ADME process.
Conformational flexibility is related to the number of the
rotatable bonds within a molecule. In the 30 OP compounds,
the number of rotatable bonds ranges from 5 for methamidophos
to 16 for ethion. Across a spread of 3000 distinct conformations
of ethion (Figure 2), the NASA varies by at most 20%; however,
in the 100 conformations with lowest energy, the difference is
less than 10%. Apparently, the NASA dependence on confor-
mation is relatively small and is further narrowed by energy-
delimited restraints. We believe, therefore, that it is reasonable
to use the lowest-energy conformation as our basis for calculat-
ing ADME properties in the current study.

A QSAR model for LD50 based on ADME descriptors alone
yields a correlation of onlyR2 ) 0.26, and a root-mean-square
error of rmse) 0.74. This indicates that substantial discrimina-
tion among OP toxicants arises from issues relating to their
direct interactions with AChE.

Phosphorylation.Once OP compounds access the active site
of AChE, they generally first form a covalent bond between
the active serine by nucleophilic attack. The transient complex
then forms a stable tetrahedral adduct after expelling a leaving
group and, thus, completes the phosphorylation process. Similar
to the case for OP metabolism, it is impractical to do high-
level quantum chemical transition state calculations for all of
the OP compounds in order to rigorously predict the activation
energy barrier and corresponding reaction rate. We thus, once
again, approximate the relative propensity of a given reaction
by evaluating its enthalpy as a function of the initial and final
states. Note that the basic structure of the AChE active site prior
to OP binding does not vary as a function of the OP itself and
thus can be eliminated as a constant across the set of different
OP species. Consequently, for our thermochemical evaluation
of the reactant state, we have restricted ourselves to quantum
chemical modeling of the OP compounds alone, whereas our
model approximated the product state via an OP-Ser203
conjugate. In each case, the energy corresponded to that of an
AM1-optimized geometry.

Ligand Aging. The phosphorylated conjugate can, in some
cases, proceed to the aging step and thus complete an irreversible
enzyme inhibition. In general, the aging involves departure of
the alkyl group from the phosphyl alkoxy substituent in the
conjugate. In a recent study on nerve agent Tabun, however, it
has been found that aging occurs through the scission of the
P-N bond rather than scission of the O-C bond, although both
bonds exist in the agent (27). Fenamiphos, Methamidophos, and
Isofenphos all have functional group similar to Tabun and thus
should probably also undergo scission of the P-N bond in the
aging process. The initial reactant state for aging is the Ser203-
OP conjugate, and the product is the Ser203-OP-aged conjugate
plus the departed aging leaving group, both of which have been
energetically evaluated for each OP compound again via AM1
optimizations. Considering all of these issues in addition to the
previously defined metabolic parameters allows us to derive the
following relationship:

whereE(orig) is the energy of the parent OP compound,E(met)
is the energy of the metabolite compound, NASA is the negative
accessible surface area of the metabolite compound,E(s203op)
is the energy of the Ser203-OP compound,E(plg) is the energy
of the phosphorylation leaving group,E(s203op_aged) is the
energy of the aged Ser203-OP compound, andE(alg) is the
energy of the aging leaving group. This equation results in a
correlation score (R2 ) 0.49; rmse) 0.62) (Figure 3) that is
improved relative to models derived on ADME considerations
alone but is still of only borderline statistical significance. It is
likely that better correlation could be achieved by augmenting
the above expression with terms from the voluminous existing
descriptor libraries; however, it is our desire to avoid overfitting
the expression with quantities that may not provide obvious
mechanistic insight. Indeed, having seven descriptors in eq 1
already runs some risk of overfitting, although, mechanistically,
it is difficult to argue for the omission of any of them. The
intuitively reasonable way of improving the above model is to

Figure 1. Correlation of the negative polar surface area between parent
OP and its metabolite.

Figure 2. Energy and surface area of the 3000 conformations for
ethion. The filled circles indicate the 100 conformations with lowest
energy.

pLD50 ) 2.82- 0.001 42E(orig) + 0.0312E(met)-
(0.004 95)(NASA)- 0.0364E(s203op)- 0.0249E(plg) +

0.005 85E(s203op_aged)- 0.0290E(alg) (1)
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account for noncovalent precursor (Michaelis) binding complex
formation between the ligand and enzyme prior to phosphoryla-
tionsa key to many inhibition processes and likely an important
discriminating factor in the AChE inhibition process.

Subsite Binding Effects. The AChE gorge region is a
biochemically complex construct with numerous subsites playing
roles in the normal enzymatic function and ultimately also in
the inhibition process. The AChE subsites that play roles in the
binding of OP compounds include (a) the esteratic site contain-
ing the active site serine; (b) the “oxyanion hole” consisting of
residues Gly121, Gly122, and Ala204; (c), the “anioinic subsite”
or the choline binding subsite, Trp86; (d) the hydrophobic site
for the alkoxy leaving group of the substrate containing an
“aromatic patch” that includes resides Trp86, Tyr337, and
Phe338; and (e) the acyl pocket, Phe295 and Phe297 (28).
Normally, one would address the binding affinity by simply
computing the interaction energy between OP and AChE.
However, at the current stage, (a) the extent and complexity of
the AChE active site render such calculations impractical at the
quantum chemical level for such a number of OP compounds
and (b) no docking programs are capable of reliably representing
the formation of covalent bonds. Instead, we have chosen to
characterize affinity trends herein via Comparative Molecular
Field Analysis (CoMFA).

The most important step in CoMFA is to obtain molecular
conformations that correspond reasonably well to those observed
for each ligand in its bound state. In previous investigations, it
has been concluded that the phosphorylation conjugate should
have the PdO oriented to the oxyanion hole to take advantage
of available hydrogen bonding (28). Furthermore, the P-OR
moiety should be oriented in a manner that permits His447
imidazolium involvement in the aging. Such advance knowledge
is of great value in assembling reasonable OP conformers for
the CoMFA and in interpreting the eventual results. In the
current work, all OP metabolites were aligned to the crystal
structure of postphosphorylation VX. In the first step of the
alignment, the phosphorus center was aligned with the VX
phosphorus in 1VXR to determine the anchor point within the
receptor active site. Once the phosphorus aligned correctly, the
P was fixed in place to permit rapid alignment of the rest of
the molecule. Flexible alignment was done by weighting the
pharmacophore feature of each atom with a Gaussian function.
The aligned structures are shown in Figure 4. It is apparent from
the structural overlap that the phosphorylation leaving group

has more flexibility than the other functional groups. This seems
reasonable given that the relatively small space near the Ser203,
His447, and acyl pocket in the active site likely restrains the
PdO and the aging leaving group but does not impinge on the
phosphorylation leaving group.

To generate our CoMFA model, an oxygen anion probe was
used to calculate the interaction energy at grid points. Our
CoMFA methodology was fairly conventional in that we used
both electrostatic and van der Waals interactions to quantify
the energy. This resulted in 28 392 data points for each of the
30 compounds. After filtering those nonsignificant terms ac-
cording to a variable importance threshold of 0.8, we were left
with 2586 data points for each compound on which to perform
the PLS regression. One principle component was used. The
resulting correlation between predicted AChE binding affinity
and experiment pLD50 value, shown in Figure 5, gaveR2 )
0.892, with a leave-one-out cross-validation score ofQ2 ) 0.571.
The corresponding rmse was 0.3, and theF value was 111.804.
The CoMFA results reveal that the electrostatic effect is more
important (fraction of 0.657) than the steric effect (0.343).

To further analyze the spatial distribution of favorable and
unfavorable interactions between AChE and the OP compounds,
the molecular surface was plotted (Figure 6) as a function of
all aligned OP metabolites. The molecular surface shown was
calculated as the isosurface of the zero van der Waals potential.
Regions predicted to be exposed are shown in blue, hydrophilic
interactions in red, and hydrophobic in gray. This molecular
surface is consistent with the structure of the active site and
the known OP/AChE inhibitive mechanism. The red region near
the PdO group indicates strong negative electrostatic potential,
which corresponds to probable hydrogen bonding within the
oxyanion hole (primarily Gly121 and Gly122). The field near
P-OR suggests a possible interaction with His447 in that the
gray regions near the terminal alkyl group indicate favorable
hydrophobic interactions. The mixed red, gray, and blue region
around the phosphorylation leaving group indicates access to a
relatively large space and dynamic multigroup interactions. The
major force governing the orientation of the phosphorylation
leaving group is likely a hydrophobic interaction toward Trp86
and the entrance of the gorge.

To further explore the OP inhibition of AChE, we also studied
the interaction between the phosphorylated OP moiety and the
AChE receptor. The net electrostatic and van der Waals
interaction energies were tested for direct correlation with acute
toxicity; however, no statistically significant relationship was
found. As a result, we have concluded that the actual AChE
OP inhibition process is mainly governed by the binding energy
of the Michaelis complex and the relative propensity of the
phosphorylation and aging processes.

Unified Model. To best predict the acute toxicity of the OP
compounds, we have integrated the results of the CoMFA model
with those of the thermochemical and ADME analyses to arrive
at the following relationship:

where the CoMFA term is the calculated affinity score from
the molecular interaction field. Although the CoMFA term
clearly dominates the overall eq 2 and little improvement is
noted in the primary correlation (R2 ) 0.90; rmse) 0.301;F

Figure 3. Correlation between experimental pLD50 and the prediction
from eq 1.

pLD50 ) -0.722- (1.30× 10-4)(E(orig)) -

1.6310-3E(met)- (5.00× 10-5)(NASA) -
(3.60× 10-3)(E(s203op))+ (2.91× 10-3)(E(plg)) +

(5.40× 10-4)(E(s203op_aged))- (4.87× 10-3)(E(alg)) +
(0.985)(CoMFA) (2)
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) 45.137; see Figure 7), the fully integrated model enjoys better
predictivity than either the CoMFA alone or the phenomeno-
logical expression (eq 1) that it complements, with a cross-
validated correlation ofQ2 ) 0.82. The strong cross-validated
correlation suggests good internal consistency that would not
be possible with overfitting and, thus, validates our choice of
descriptors. The model also improves substantially on a previous
study wherein a correlation (R ) 0.7) was established between
the acute toxicity (LD50) and in vitro AChE potency of a group
of direct-acting OP compounds (29), thus, demonstrating a

unique capacity of our model to handle those OP compounds
that undergo biotransformation prior to interacting with AChE.

Contribution Analysis. To compare the relative importance
of the terms included in eqs 1 and 2, we have relative importance
values for each component (i.e., coefficients of the estimated
normalized linear model) and have reported these quantities in
Table 2. The CoMFA term is clearly the largest contribution to
eq 2, with the next largest term,E(plg), having a relative weight
of only 0.19. Given the fact that the CoMFA predictions, taken
by themselves, correlate strongly (R ) 0.71) with eq 1 (the
phenomenological QSAR developed without a CoMFA contri-
bution) it appears that much of this perceived dominance must
actually result from functional overlap between features repre-
sented in the CoMFA model and those inherent in other
descriptors. Adding a CoMFA term to the QSAR thus introduces
some redundancy among descriptors and thereby reduces the
proportional weights of any other descriptor that exhibits some
degree of linear dependence with the CoMFA (in this case all
of them). The large reduction in weight of the NASA term, for
example, implies that it is so nearly completely described within
the CoMFA as to contribute negligibly to the expression. This
is not especially surprising, since CoMFA models frequently
provide very good representations of three-dimensional elec-
trostatic distributions. While we retain the NASA term within
eq 2 for the sake of direct comparison to eq 1, we note that
retraining the other descriptors in the absence of NASA yields
an expression with values forR2, Q2, and coefficients for the
other descriptors that are identical (within the significant fig-
ures reported herein) to those reported for eq 2. Furthermore,
since descriptors based on molecular energy simultaneously
represent multiple terms that may have varying levels of

Figure 4. Aligned structures of the 30 OP metabolites. Oxygen in red, carbon in gray, sulfur in yellow, nitrogen in blue, and hydrogen in white.

Figure 5. Correlation between experimental pLD50 and the predicted
CoMFA score.
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correlative redundancy relative to the CoMFA (i.e., molecular
electrostatic and van der Waals effects are also represented in
CoMFA, but bond energy is not), the coefficient for that

descriptor (its coefficient weight and possibly even sign) within
a QSAR may change upon integration of CoMFA into the
model. Because of such effects, eq 2, although a predictive
tool of exceptional value, is less amenable to intuitive physi-
cal interpretation than the purely phenomenological eq 1. We
will thus restrict our interpretive analysis to trends observed in
eq 1.

In eq 1,E(met) andE(plg) are assigned the largest weights,
while E(s203op_aged) andE(orig) appear to be the least impor-
tant descriptors. This observation is consistent with the mech-
anism of actual OP toxicity. ForE(plg) versusE(s203op_aged),
the physical rationale for these weights is quite clear: structures
of the aged complexes vary fairly little across the set of 30
toxins, whereas the phosphorylation leaving group contains
much of the molecular diversity present in this collection. For
E(met) versusE(orig), an important kinetic relationship is
suggested: if the parent compound energies ultimately have
relatively small contributions on the QSAR, it suggests that their
respective metabolic reactions may all share a similar activation
energy, whereas the importance ofE(met) suggests that the
reverse activation barrier may have substantially greater diver-
sity. E(met) also must be considered as descriptor of relevance
to the subsequent phosphorylation process (i.e., in this case
modeling the reactant); thus in effect, it contributes twice to
the equation.

Conclusions

Molecular modeling has been used herein to investigate the
mechanism of acute toxicity of the OP compounds via the
construction of a number of QSAR models to account for
available LD50 data. A purely phenomenological QSAR model
describing the toxic process as a function of ADME and covalent
bonding processes was constructed as a seven-parameter model
wherein ADME effects were modeled as the reactant and

Figure 6. Interaction of molecular surface for OP compounds. Red regions indicate hydrophilic interactions, blue regions indicate exposed regions,
and gray regions experience hydrophobic interactions.

Figure 7. Correlation between the experimental and predicted pLD50

for the 30 OP compounds for the fully integrated model (eq 2).

Table 2. Relative Importance of the Descriptor in Eqs 1 and 2

relative weights

terms eq 1 eq 2 change

E(plg) 0.72 0.19 -74%
E(alg) 0.22 0.08 -64%
E(s203op) 0.38 0.08 -79%
E(met) 1.0 0.12 -88%
NASA 0.17 0.004 -98%
E(s203op_aged) 0.05 0.01 -80%
E(orig) 0.05 0.01 -80%
CoMFA - 1.00 +100%
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product energies for the incumbent biotransformation reaction,
plus the ligand negative accessible surface area, and the covalent
phosphorylation and aging reactions were approximated by
thermochemical characterization. This model achieved a cor-
relation of R2 ) 0.49 relative to experiment, suggesting that
the relationship is statistically valid but, lacking an account of
the initial ligand-receptor Michaelis complex formation, likely
not of great predictive value.

Given the unreliability of using docking methods to evaluate
affinities for precovalent Michaelis complexes, we chose to
account for this effect via a CoMFA pseudointeraction field.
Without suitable in vitro affinity data covering our full training
set, we chose to fit the CoMFA model directly to the LD50,
achieving a surprisingly strong correlation with experiment (R2

) 0.89), thus, indicating that the pharmacophoric fit between
receptor and ligand is a key factor in determining toxic inhibition
of the AChE enzyme. However the CoMFA's marginal predic-
tivity (Q2 ) 0.57) clearly reflects a need for a more rigorous
account of ADME effects and subsequent covalent binding
processes. With all parameters considered together (ADME,
covalent, and CoMFA), both correlation (R2 ) 0.90) and
predictivity (Q2 ) 0.82) are strong.

While the unified model is of substantial predictive value, it
does come at the expense of interpretive ease: while spatial
aspects of the CoMFA reproduce AChE inhibition phenomena
that have been previously observed from structure-based
analysis, correlative redundancy between the CoMFA and the
various phenomenological descriptors tends to produce nonin-
tuitive weights and signs that partially obscure the role of the
various terms. For this reason, the purely phenomenological
(non-CoMFA) model remains of some rhetorical value, provid-
ing some guidance as to the relative importance of different
ADME and covalent binding effects.

The fact that both our phenomenological and composite
models exhibit reasonable correlation with existing LD50 data
despite approximating the efficacy of multiple enzymatic and
covalent inhibition reactions via thermochemistry rather than
kinetic activation barriers may suggest that the reactive processes
must largely achieve equilibrium within the time frame under
which the in vivo studies were carried outsa fact that puts more
weight on the relative energetics of product and reaction than
on the actual reaction barrier. This assessment deserves further
analysis through explicit quantum chemical transition state
calculations that are planned as a future study. Our fairly
simplistic ADME model is another area for potential improve-
ment. Indications are that our metabolic representation is
reasonable; however, the blanket representation of other absorp-
tion, distribution, and excretion effects via single NASA is a
major approximation. While the CoMFA appeared to be
surprisingly adept at encoding such ADME trends, it is highly
unlikely that it recovered all relevant effects. For example, one
factor of significant possible interest to AChE inhibition research
that may not have been adequately accounted for is blood-
brain barrier (BBB) transmission. Identification of a convenient
and apt BBB descriptor may further improve the model.

Rigorously addressing all potential model refinements may
constitute a computationally unwieldy paradigm. While such
refinement should nonetheless be pursued for the sake of a
complete understanding of the OP toxicity mechanism, it is our
short-term hope that the relative computational simplicity of
this current model, as well as its reasonable predictive capacity,
will permit rapid and reliable evaluation of other prospective
toxins. The simpler phenomenological model also pinpoints
trends in the relative importance of different factors on the acute

toxicity but does make substantial approximations and leaves
some details of the specific effects rather opaque. In the interests
of full understanding of the acute toxicity, we are considering
some additional factors, including the influence of water on the
catalytic reaction within AChE, dynamic conformational changes
in the active site, and transport kinetics governing how the OP
compounds access the catalytic triad. In addition, mutagenesis
work suggests that the peripheral anionic site may affect the
rate constant by interacting with the cationic aging leaving group
at Asp74 in human AChE (30). Finally, the details relating to
the binding of the anionic phosphorylation leaving group may
also prove to be of interest.
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